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Abstract 

The hybrid least mean square (HLMS) adaptive filter is a filter with an adaptation algorithm that is a combination of 
the conventional LMS algorithm and the normalized LMS (NLMS) algorithm. In this paper, the performance of the 
HLMS adaptive filtering algorithm is investigated. To do so, an analytical expression, in terms of the transient mean 
square error (MSE), is derived with application to the adaptive line enhancer (ALE). Based on this expression, we are able 
to examine the convergence properties of the HLMS. Simulation data using the ALE as an application verifies the 
accuracy of the analytical results. The performance of the HLMS algorithm is also compared with the conventional LMS 
algorithm as well as the NLMS algorithm. From the simulation results, we observed that, in general, the HLMS 
algorithm performs more robustly than the conventional LMS and the NLMS algorithms. Since the HLMS algorithm is 
a combination of the LMS algorithm and the NLMS algorithm, the selection of the optimum switching point of the 
HLMS algorithm is also addressed using a numerical approach. Many interesting characteristics of the switching point 
are obtained which show the relationship with the relevant parameters of the HLMS adaptive filter. The sensitivity of the 
selection of switching point is also examined. 

Zusammenfassung 

Das hybride least-mean-square (HLMS) adaptive Filter ist ein Filter mit einem Adaptionsalgorithmus, der eine 
Kombination aus dem konventionellen LMS-Algorithmus und dem normalisierten LMS-(NLMS)-Algorithmus dar- 
stellt. In dieser Arbeit werden die Eigenschaften des HLMS adaptiven Filteralgorithmus untersucht. Hierzu wird ein 
analytischer Ausdruck in Abhlngigkeit des transienten mittleren quadratischen Fehlers (MSE) abgeleitet und auf einen 
adaptiven Leitungsentzerrer (ALE) angewendet. Basierend auf diesem Zusammenhang konnen wir die Konvergenzeigen- 
schaften des HLMS untersuchen. Simulationsergebnisse unter Anwendung des ALE zeigen die Genauigkeit des 
analytischen Ergebnisses. Die Eigenschaften des HLMS-Algorithmus werden weiterhin mit dem konventionellen 
LMS-Algorithmus sowie mit dem NLMS-Algorithmus verglichen. Anhand der Simulationsergebnisse sehen wir, dab sich 
der HLMS-Algorithmus im allgemeinen robuster verhalt als der konventionelle LMS und der NLMS-Algorithmus. Da 
der HLMS-Algorithmus eine Kombination des LMS- und des NLMS-Algorithmus darstellt, wird die Wahl des 
optimalen Umschaltpunktes des HLMS anhand einer numerischen Losung betrachtet. Man erhllt viele interessante 
Eigenschaften des Umschaltzeitpunktes, die die Beziehungen mit den relevanten Parametern des HLMS adaptiven 
Filters aufzeigen. Es wird weiterhin die Empfindlichkeit beziiglich der Wahl des Umschaltzeitpunktes untersucht. 
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Le filtre adaptatif LMS hybride (HLMS) est un filtre dont l’algorithme d’adaptation est une combinaison de 
l’algorithme LMS conventionnel et de l’algorithme LMS normalise (NLMS). Nous ttudions dans cet article les 
performances de l’algorithme de filtrage adaptatif HLMS. Pour ce faire, une expression analytique en termes de l’erreur 
quadratique moyenne (MSE) transitoire est derivee et appliqued au rehausseur de raie spectrale (ALE). Sur la base de 
cette expression, nous sommes capables d’examiner les proprietb de convergence du HLMS. Des donn6es de simulation 
utilisant l’ALE comme application permettent de verifier la precision des risultats analytiques. Les performances du 
HLMS sont Cgalement comparees a celles de l’algorithme LMS conventionnel ainsi qu’a celles de l’algorithme NLMS. 
A partir de ces resultats de simulation nous avons observe que, en general, l’algorithme HLMS se comporte de man&e 
plus robuste que les algorithmes LMS et NLMS. Du fait que l’algorithme HLMS est une combinaison des algorithmes 
LMS et NLMS, la selection du point optimal de commutation de l’algorithme HLMS est Cgalement CtudiCe a l’aide dune 
approche numbique. De nombreuses caracttristiques interessantes du point de commutation sont obtenues, explicitant 
la relation entre les parambtres significatifs du filtre adaptatif HLMS. La sensibilite de la selection du point de 
commutation est Cgalement examinte. 

Keywords: Normalized algorithm; Hybrid algorithm; Adaptive line-enhancer; Switching point; Convergence property 

List of unusual symbols: 

x(k) 
z,(k) 

44 
R 

TrI.1 
Q 
A 

d(k) 
y(k) 
si(k) 
e(k) 
5(k) 
Smin 

w(k) 
W0pt 

hi(k) 

input signal vector 
the ith element of transformed domain signal 
vector 
noise signal 
autocorrelation matrix of x(k) 

trace of the matrix within the brackets 
orthogonal transformation matrix 
diagonal matrix with entries being li 
desired signal response 
adaptive filtered output 
the ith sinusoidal signal of x(k) 

error signal 
mean square error (of e(k)) 

minimum mean square error 
time domain weight vector 
optimum weight vector of w(k) 

the ith element of transformed domain weight 
vector 
cross-correlation vector 
filter length 
number of sinusoidal signal 
variance of signals s(k) 
variance of noise n(k) 
variance of d(k) 
mean weight vector of w(k) 
the ith eigenvalue of R 

the corresponding eigenvector of lj 
Cov[w(k)]covariance matrix of w(k) 

r(k) diagonal matrix with entries being eigen- 
values of Cov(w(k)] 

Yi the ith eigenvalue of Cov[w[(k)] 

Ai) 
Ccl 

P2 

rl0 

the step-size of the ith updated equation 
step-size for initial adaptation process 
step-size after initial adaptation process 
scalar variable 

1. Introduction 

In various engineering applications, adaptive fil- 
tering techniques are very useful. This is due to the 
fact that they perform remarkably well over a wide 
range of input signal parameter statistics with no 
a priori information about the precise nature of 
these parameters. Therefore, in real-time applica- 
tions they are very attractive. 

Various adaptive filtering algorithms have been 
suggested by many researchers [9,11,13-15,181. 
The most commonly used is the least mean square 
(LMS) algorithm because of its simplicity, economy 
in computation, and ease in implementation. How- 
ever, in the LMS adaptation algorithm the modes 
of the adaptive process converge at different rates 
such that the rate of each mode is determined by 
the associated eigenvalues of the reference autocor- 
relation matrix. For a large disparity of eigen- 
values, in order to keep the algorithms stable, the 
LMS adaptive process may converge slowly. Under 
such circumstances, other algorithms with fast con- 
vergence properties are used. 
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The normalized LMS (NLMS) algorithm in the 
transform domain presented by Narayan et al. [ 131 
is one of the methods that can achieve better con- 
vergence properties. Indeed, the equivalent time- 
domain expression of the NLMS algorithm in the 
transform domain has a form very similar to the 
recursive least square (RLS) algorithm, except for 
the constant step-size. 

The implementation of the NLMS algorithm in 
the transform domain acquires the information of 
the power of the transformed input signal. How- 
ever, because of the imperfection in the estimate of 
the power, the adaptation process of the NLMS 
algorithm may introduce an overshoot in the initial 
adaptation process. To solve the problem a hybrid 
LMS (HLMS) algorithm implemented in the trans- 
form domain adaptive filter is suggested here. The 
concept behind the HLMS algorithms is to use the 
merits of both the LMS and the NLMS algorithms 
in the transform domain to achieve the desired 
performance. 

This paper first presents the HLMS algorithm 
and discusses the rationale behind it. Then the 
attention is focused on the analysis of the perfor- 
mance of the HLMS algorithm used in adaptive 
filtering. For the purpose of analysis, an equivalent 
time-domain expression of the transform domain 
HLMS adaptive algorithm is analyzed, and the 

-. 

adaptive line-enhancer (ALE) is used as an applica- 
tion. The main result of this paper is that an ana- 
lytical expression in terms of mean square error 
(MSE) is obtained. Based on this expression we are 
able to investigate the convergence property and 
show how it is related to the relevant parameters of 
the HLMS algorithm. 

2. The hybrid LMS (HLMS) algorithm 

The hybrid LMS (HLMS) adaptive filter, the 
adaptation algorithm of which is a combination of 
the LMS algorithm and the NLMS algorithm in 
the transform domain, is depicted in Fig. 1. Basi- 
cally, the structure of the HLMS adaptive filter 
is very similar to that of the NLMS adaptive 
filter. The difference between both adaptive filters 
lies in the algorithms used for the adaptation 
process. 

Without loss of generality, in the following 
discussion, the input signal is assumed to be a 
complex-valued random process. Form Fig. 1, the 
equation of up-dating the weights of the HLMS 
algorithm can be expressed as 

bi(k + 1) = h(k) + 2p(i)e(k)$(k), (la) 

_-- z-1 T=-l I I I 1 L 
Orthogonal transformation 

Fig. 1. The transformed domain HLMS adaptive filter. 
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with 

P(i) = 

: 

11; for initial adaptation process, 

p2 . when input signal samples have UW 

E [ lzi(k) 1’1’ been accumulated sufficiently, 

i=O 1 7 ,..*, N- 1, 

where * denotes complex conjugate and both p1 
and p2 are the step-sizes which control the speed of 
convergence and stability. In Eq. (la), b,(k) is the ith 
component of the transformed tap-weight at kth 
time instant and z,(k) is the corresponding trans- 
formed input signal. Accordingly, the expected 
value of lZi(k)l’, E[lzi(k)l’], represents the average 
power of zi(k). Also, in Eq. (la), e(k) is the error 
signal which is defined as the difference of the 
desired signal, d(k), from the filtered signal, y(k), i.e., 
e(k) = d(k) - y(k). 

As can be seen from Eq. (lb), if the value of p(i) is 
taken to be p2/E[IZi(k)12] in the entire adaptation 
process then we have the NLMS algorithm. On the 
other hand, if only p1 is used for the adaptation, 
then it will be the LMS algorithm in the transform 
domain. As addressed in [13] the LMS algorithm 
under an orthogonal transform domain can be 
shown to be equivalent to the conventional time- 
domain LMS algorithm. From this point of view, 
the HLMS algorithm can be visualized as a gener- 
alized expression of both the LMS and NLMS 
algorithms in the transform domain depending on 
how the value of p(i) is selected. 

Because of insufficient input signals used to esti- 
mate the average power of the input signal, over- 
shoot may occur in the NLMS algorithm [a]. 
Therefore, we propose in Eq. (lb) that at the begin- 
ning of the adaptation process, p(i) is chosen to be 
a constant value, ,nl. As described in [6], if we 
expect the LMS algorithm to have a faster conver- 
gence rate, p1 should be assigned a value which will 
be near l/3 Tr {R}. The time-domain input autocor- 
relation matrix, R, is defined as R = E [x* (k) XT(k)] 
and Tr{ .} denotes the trace of the matrix within 
brackets. Here x(k) is the input signal vector and 
superscript T denotes the transpose operator. Once 
we have accumulated sufficient signal samples for 

estimating the power of Z,(k) such that the over- 
shoot can be eliminated, p(i) is then changed to the 
value of ~2/E[lZi(k)12]. Here p2 has to satisfy the 
constraint as in the NLMS algorithm [4,12]. 

The equivalent time-domain expression of Eq. (1) 
can be easily shown to be [13,15] 

w(k + 1) = w(k) + 2ple(k)x*(k) for 0 < k < p 

(24 

and 

w(k + 1) = w(k) +2p2R-‘e(k)x*(k) for k > p + 1 

(2b) 

with integer p be the switching point, provided that 
the orthogonal transformation matrix, in Fig. 1, 
completely diagonalized R. Here R- ’ is the inverse 
matrix of R and p is the point in which we turn the 
HLMS algorithm from the LMS algorithm mode 
into the NLMS algorithm mode. The problem of 
selecting the switching point will be investigated in 
Section 4.1. Also, in Eqs. (2), w(k) and x(k) are the 
time-domain weight vector and the input signal 
vector at time instant k, respectively, and are de- 
fined as w(k) = [w,(k) w2(k) . . . wIV(k)lT and x(k) 
= [x(k) x(k - 1) . . . x(k - N + l)lT. For simpli- 

city, our analysis will be based on Eq. (2) instead of 

Eq. (1). 

3. Performance of the HLMS algorithm 
used as an ALE 

In this section, we apply the HLMS algorithm to 
an adaptive line-enhanced (ALE). The performance 
of the ALE is then analyzed. 

The ALE is an adaptive filter configuration used 
for the detection of a narrow-band signal in the 
presence of broad-band noise. It was first proposed 
by Widrow et al. [19] and extensively discussed by 
many others [5,7,21]. The ALE becomes a com- 
petitor of the fast Fourier algorithm as a sensitive 
detector and has capabilities that may exceed those 
of conventional spectral analyzers when the un- 
known sinusoidal wave has finite bandwidth or is 
frequency modulated [8,20]. Together with the 
adaptive notch filter, the ALE can also be used as 
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a pre-processor to further improve the resolution of 
frequency estimation for short data records [3]. 

As shown in Fig. 2, the ALE is implemented with 
a two-channel processor in which a delayed version 
of the received signal is adaptively filtered and 
substracted from the instantaneous received signal. 
It has been shown to be an adaptive implementa- 
tion of a d-step Wiener predictor [21]. Here the 
delay parameter d is called the decorrelation para- 
meter of the ALE. The main function of delay 
parameter A is to remove correlation that may exist 
between the broad-band components of the two 
channels and introducing a simple phase shift be- 
tween the narrow-band signals. Therefore, the ALE 
can be viewed as a signal separator, i.e., it separates 
the desired component from the undesired com- 
ponent. 

In order to carry out the theoretical analysis of 
the ALE, in terms of MSE, certain assumptions for 
the input signals have to be made. Fisher and 
Bershad [7] utilized the complex time-domain 
LMS adaptation algorithm to theoretically investi- 
gate the behavior of the ALE. The signal model 
assumed by Fisher and Bershad [7] included mul- 
tiple sinusoids in broad-band noise. It is also as- 
sumed that each sinusoid signal is narrow band, 
statistically independent, orthogonal, and Rayleigh 

fading with equal power. Here, the signal model 
used in [7] was extended by Chern [l] to the case 
of multiple sinusoids with unequal power. This 
extended signal model is available for investigating 
the effect on convergence rate due to the unequal 
power of the complex LMS ALE. For the purpose 
of comparison, again, the extended signal model is 
considered for the present analysis. 

3.1. Signal model description 

Consider an ALE with length N which is used to 
estimate L statistically independent, orthogonal, 
stationary, and relatively slowly varying Rayleigh 
fading complex sinusoids in additive circular Gaus- 
sian while noise [16] independent of the sinusoids. 
The ith complex sinusoid can be written in the 
form, e.g., S,(k) = Ai(k)exp(joikT,), k = 0,1,2, . . . , 

with j = J-1. Here Wi represents the ith carrier 
frequency and T, is the sampling interval. Also, 
Ai denotes a slowly varying, zero-mean circular 
normal Gaussian [16] complex valued envelope of 
the ith sinusoid with the following properties, 
e.g., E(Ai(k)Az(n)} = 0, i # FI and E{Ai(k)AT(n)} 

= 0, if Jk - n1 > N, or E{Ai(k)A”(n)} = a& if 

d(k) 

1’ 
Z-A Z--I z-1 - _ - 

k+ -( 
z-1 

Orthogional transformation 

Fig. 2. The transformed domain HLMS adaptive line-enhancer. 
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lk-nl<N,fori=1,2 ,..., L.Hereoiiisthevari- 
ante of the ith sinusoidal signal. This will consist of 
the general Gaussian assumption described earlier. 
Moreover, the additive circular Gaussian white 
noise, n(k), is assumed to be zero mean with the 
statistical property E{n(k)n*(i)} = a:, if k = i, or 
E{n(k) n*(i)} = 0, if k # i. Here ai is the variance of 
n(k). The assumptions described for above model 
are such that the ALE operates on narrow-band 
Gaussian sinusoidal inputs with small bandwidth 
compared to the reciprocal of the filter length, N. 

Now, let d(k) denote the received signal of the 
ALE. Since the input of the ALE is the delayed 
version of received signal d(k), consequently, the 
input autocorrelation matrix, R, can be expressed 
as 

R = CJ~I + i OS2,ViV”y (4) 
i=l 

where I is the identity matrix and the superscript 
H denotes the complex conjugate transpose oper- 
ator. In Eq. (4), vi, i = 1,2, . . . , L, denote the vectors 

Vi = [l ejwkTs . . . ej(N-l)w~T~]T, i = 1,2, . . . , L. (5) 

Under the assumption that {vi} is a set of ortho- 
gonal vectors, the eigenvalues of R are given as 

Ai = 0: + No& i = 1,2, . . . . L, (64 

with associated eigenvectors 

qi=Vi/fi, i= 1,2 ,..., L (6b) 

and 

ii = CJ,2, i=L+l,L+2 ,..., N, (6~) 

with associated eigenvectors qi, i=L+l, 
L +2,..., N, which form a set of orthonormal vec- 
tors and are orthogonal to qi, i = 1,2, . . . , L. 

Similarly, the cross-correlation vector of d(k) and 
x(k) is given by 

p = E[d(k)x*(k)] = i fliOsZ,Vi, 
i=l 

(7) 

where pi, i = 1,2, . . . , L, are complex phase factors 
depending on the lag between x(k) and d(k). 

3.2. Mean weight vector of the ALE 

Basically, the analysis of the HLMS algorithm is 
carried out in a similar manner as in [l, 71. To 
begin the analysis, we start with w(O), the initial 
weight vector, and iteratively substituting in Eqs. 
(2), results in [7] 

k-l 

w(k) = fl [Z - 2pix*(i)xT(i)]W(0) 
i=O 

+ 2pld(k - l)x*(k - 1) 

k-2 k-l 

+  2~1 1 n IX - 2w*(WTWl 
i=O m=i+ 1 

x d(i)x*(i) for 0 < k < p. (84 

It is noted that Eq. (8a) is in the conventional 
time-domain LMS algorithm mode. Since p is the 
switching point, for k equal or greater than p + 1 
the weight update equation will be in the NLMS 
algorithm mode. Similarly, if we start with 
w(p + I), the initial weight vector in the mode of 
NLMS algorithm, the HLMS algorithm weight 
update equation can be obtained as 

k-l 

w(k) = n [I - %2R- ‘x*(dxT(dl 
i=p 

i 

p-1 

x ,Fo [I - 2kx*WT(i)lw@) 

p-2 p-l 

+ 74 1 I-I [I- 2Plx*k4xTb41 
i=O m=i+ 1 

x d(i)x*(i) + 2,uld(p - l)x*(p - 1) 1 

k-2 

+ 2p2R-l c my+1 [I- 
i=p i 

k-l 

+ 2p2R- ‘d(k - l)x*(k - 1) 

forkap+l. (8b) 
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As discussed in [7] (see [7] after Eq. (4)), in Eq. (8) 
w(k) is a function of only i < k elements of the 
sequences {d(i)}, {x($x*(i)}. Thus, it is concluded 
that the elements of the vectors w(k) and x(k) are 
mutually statistically independent if x(k) is statis- 
tically independent of the i # k elements of the 
sequences (d(i),d*(i)j, {x($x*(i)}. While this is 
a common assumption in adaptive filtering analysis 
(particularly when p1 is small enough). As ad- 
dressed in [ 173 (see [ 173 after Eq. (5)) this is also an 
excellent assumption for the ALE even for highly 
correlated inputs and values of p1 approaching the 
stability limit of the LMS algorithm. 

To derive the mean square error (MSE) in the 
transient state, we need to obtain the recursive 
mean weight vector and the weight covariance 
matrix. Under the assumption just described and 
following the similar approach as in [7], the corres- 
ponding mean weight vector of Eqs. (8) can be 
written as 

M,,,(k) = E[w(k)] = [I - 2p1RlkM,(0) 

k-l 

+  2p1 C (I - 2plRJip for k 6 p, 
i=O 

(94 

in the LMS algorithm mode and 

M,(k) = (1 - 2pU2)k-P 
i 

p-1 

2~1 c (Z - 2~1R)‘p 
i=O 

+ (1 - 2PI~)PMv(0) 

1 

k- 1 

+ 2p2R-’ x(1 - 2~~)~-~-iR 
i=p 

fork>p+l, (W 

in the NLMS algorithm mode, respectively. In Eqs. 
(9), M,(O) is the initial mean weight vector and its 
value can be arbitrarily selected. In steady-state, 
Eq. (9b) becomes 

lim M,(k) = w,~, = R - ‘p. 
k+m 

(10) 

This is because in the steady state, the first term on 
the right-hand side of Eq. (9b) will vanish and the 
last term is reduced to Wiener weight vector, pro- 
vided that 0 < ,D~ < 1. Now, applying the signal 

model of ALE described in Section 3.1 to the mean 
weight vector of Eqs. (9), results in [7] 

2 

M,,,(k) = i p.“{l - [l - 2piiilk}Vi 
i=l ’ Ai 

for k C/J 

and (from Appendix 

M,(k) 
L rT2 

A) 

(114 

=i~lDi~{l -tl -2P1Ai)p}(1 -2P2)k-p}Vi 

fork>p+ 1, (1 lb) 

respectively, where for simplicity, M,,,(O) is assumed 
to be a null vector. 

3.3. Weight covariance matrix of the ALE 

To obtain the weight covariance matrix recursive 
equation, we can follow a similar procedure as in 
[7]. First, we consider the weight covariance matrix 
recursive equation of the HLMS algorithm in the 
LMS algorithm mode. Since it is nothing but an 
LMS algorithm (for k d p), we have [l] 

Cov[w(k + l)] 

= E{ [w(k + 1) - E[w(k + l)]][w(k + 1) 

- E[w(k + l)]“} 

= [Z - 4plR]Cov[w(k)] + 4p;RCov[w(k)]R 

+ 4&{Tr[RCov[w(k)]] -p”M,(k) 

- M,H(k)p + 0: + M:(n)RM,(k)}R 

for k d p, (12a) 

where 0: is the variance of d(k). On the other hand, 
the recursive equation in the NLMS algorithm 
mode can be derived (Appendix B) 

Cov[w(k + l)] 

= (1 - 2p2)2 Cov [w(k)] 

+ 4&Tr{RCov[w(k)]}R-’ 

+4&R-73: + M:(k)RM,(k) -p”M,(k) 

-Mf;(k)p] fork>p+l. (12b) 
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Now, to simplify the expression of the transient 
MSE it will be better to factorize the recursive 
weight covariance matrix equation, in terms of 
eigenvalues and the corresponding eigenvectors of 
Cov(w(k)}. As in [7], we can similarly show that if 
the Q matrix diagonalizes R, it also diagonalizes the 
weight covariance matrix, provided that the initial 
weight covariance matrix is diagonalized by Q. 
Here the matrix Q is an N x N square matrix with 
its columns being the eigenvectors of R. Thus the 
weight covariance matrix at time k can be ex- 
pressed as 

CovCw(k)l = Qr(k)QH = 5 yi(k)qi@, 
i=l 

(13) 

where T(k) is a diagonal matrix with its entry ele- 
ments being {y,(k); i = 1,2, . . . , Nj: 

r(k) = diagh(k) Mk) . . . dk)l. (14) 

Consequently, pre- and post-multiplying Eq. (12a) 
and Eq. (12b) by QH and Q, respectively, we have 

T(k + 1) = T(k) - 4plAr(k) + 4p;AQk)A 

+ 4&Tr{AT(k))A 

+ 4&rlo(k)A for k Q p, (15a) 

where q,(k) will be defined in Eq. (16) and 

T(k + 1) = (1 - 2&r(k) + 4,r&,(k)A-’ 

+ 4&Tr{T(k)A}A-’ 

forkap+l, (15b) 

where A is a diagonal matrix with its entry being 
the eigenvalues of R. In Eqs. (15), the scalar variable 
q+,,(k) is defined as 

V,(k) = Smin + CM,(k) - woptlHRCMw(k) - ~optl 
(16) 

and the minimum MSE is given by 

5min = Od2 - wYptp. 

3.4. Transient MSE of the ALE 

(17) 

To evaluate the performance the transient con- 
vergence property is of interest and usually 

described by the learning curve of the transient 
MSE. The MSE, by definition, is given by t(k) = 
E[le(k)l]. With y(k) = xT(k)w(k) and after some 
manipulation, we have 

r(k) = qo(k) + Tr{R Cov fw(k)l> 
N 

= V,(k) + 1 yi(k)li 
i=l 

(18) 

From Eq. (18), we see that to evaluate the transient 
MSE, we simply compute the scalar variables q,(k) 
and y,(k), i = 1,2, . . . , N, at each time instant k. For 
convenience of analysis, here we consider the case 
of two unequal power sinusoidal signals (i.e., L = 2) 
buried in additive white noise. The reason of using 
the unequal power sinusoids for analysis was de- 
scribed earlier. 

For simplicity, Eqs. (Isa) and (15b) can be writ- 
ten with reduced rank; for L = 2, we have 

yi(k + 1) = (1 - 4pili + 4pfn?)yi(k) 

+ 4P:li t Ajyj(k) + 4PL:liVo(k), 
j=l 

i = 1,2,3, for k G p (194 

in the LMS algorithm mode and 

yi(k + 1) = (1 - 4~2 + 4&)Yi(k) 

+ 4~Zlt’~ 5 njyj(k) + 4pzl; ‘Y/o(k), 
j= 1 

i=l,2,3, fork>p+l (19b) 

in the NLMS algorithm mode. Here yi(k), i = 1,2,3, 
in Eqs. (19) are associated with the corresponding 

eigenvectors Vi/JN, i = 1,2 and qi, i = 3 (see Eqs. 
(6)), respectively. Under the assumption that the 
initial mean weight vector is a null vector and 
starting with y,(O), then based on Eqs. (19), we can 
evaluate y,(k), for all k. To evaluate the MSE, an 
explicit expression of qo(k), in Eq. (16), has to be 
derived. In Eq. (16), the error weight vector is de- 
fined as the difference of the mean weight vector 
and the optimum weight vector. Applying Eqs. 
(4),(7),(10) and (11) to the error weight vector, we 
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have 

M,(k) - W,pt = - i$j Bi $ (l - 2Pl~i)kVi 
“I 

for k d p (204 

and 

M,(k) - w,pt 

= - jr j?i 2 (1 - 2prii)‘(l - 2pz)k-PVi 
L 

fork>p+ 1, (20b) 

respectively. Substituting Eqs. (20) into Eq. (16) 
accordingly, we have 

r,(k) = 4min + ~ (1 -- 2pIli)“~ N 
i=l 1 

for k < p 

and 

(21a) 

qo(k) = <min 

+ i (1 _ 2P1~i)2P(1 _ 2p,)2(k-P’q N 
i=l L 

for k 3p + 1. (21b) 

In Eqs. (21), the value of r,in can be easily evaluated 
from Eq. (17) by applying the corresponding para- 
meters to it. For L = 2, based on Eqs. (6), (18), (19) 
and (21), the transient MSE for the HLMS algo- 
rithm can be evaluated. However, the transient 
MSE can be expressed in a more explicit form. This 
is derived in the following. 

To have a closed-form expression of the transient 
MSE, first, we substitute Eq. (19b) into the second 
term on the right-hand side of Eq. (18), yields 

= [ 1 -4p2 + (N + I)~,u:] 5 liyi (k - 1) 
i=l 

+ ‘b;Nvl,(k - 1) 

= [l - 4112 + (N + 1)4/~;]~-~ 5 I-ivi(p) 
i=l 

k-p- 1 
+ izO Cl - 4~~ + (N + 1)4~:1’4~:N 

x qo(k - i - 1) for k 3 p + 1. (22) 

Applying Eq. (22) to Eq. (18), the MSE in the 
NLMS algorithm mode can be expressed as 

t(k) = (1 ~ 4~2 + (N + 1)4~L:)~-~ ; iiyi(p) 
,=I 

k-p- I 

+ i& Cl - 4Pz + (N + 1)4P:l’ 

x 4~; N tyo(k - i - 1) + q,(k) 

fork>p+ 1. (23) 

As observed from Eq. (23), to have the transient 
MSE in a closed form, we need the derivation of 
yi(p), in terms of its initial value. However, since the 
values of yi(p), i = 1,2, , N, are indeed in the 
LMS algorithm mode, the results derived in [l] (see 
Appendix C), can be directly applied. Thus, the 
closed-form expression of the transient MSE in the 
NLMS algorithm mode can be obtained. It should 
be pointed out, at this moment, that the perfor- 
mance evaluation of the NLMS algorithm, in terms 
of transient MSE, can be directly obtained using 
the HLMS algorithm with p = 0. 

4. Numerical analysis of convergence rate and 
the choice of switching point 

To evaluate the performance of the equivalent 
time-domain expression of the HLMS adaptive al- 
gorithm, a computer simulation is carried out for 
the analytical expression of MSE derived in last 
section. The results so obtained are also compared 
with the results of the LMS algorithm as well as the 
NLMS algorithm. Moreover, as described earlier, 
in the HLMS algorithm a switching point has to be 
determined, in which the LMS algorithm mode 
turns into the NLMS algorithm mode when the 
input signals are sufficient to accurately estimate 
the received signal power. 
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Thus, the objective of this section is to examine 
the convergence property as well as to determine 
the value of switching point in different environ- 
ments. The problem of selecting the switching point 
will be discussed first. It is noted that, in the follow- 
ing computer simulation, the parameter SNR (the 
signal-to-noise ratio) is defined as the power ratio 
of the largest sinusoidal signal to the noise power. 
Also, SSR is defined as the power ratio between the 
largest sinusoidal and the smallest sinusoidal com- 
ponents in the received signal. 

4.1. The choice of the switching point 

In the HLMS adaptation algorithm, the problem 
of selecting the switching point is very important. 
This is because the HLMS algorithm is a combina- 
tion of the LMS algorithm and the NLMS algo- 
rithm, therefore, the transient convergence rate is 
dominated by the value of p, the switching point. 
Based on the explicit expressions obtained in last 
section, we are able to find out the optimum value 
of the switching point in different situations. 

The objective of this section is to answer the 
following question. In case of ALE, what is the 
proper value of the parameter, p, that yields the 
smallest MSE at a fixed observation time, n, when 
other parameters in HLMS algorithm are given. 

The optimum switching point can be obtained by 
minimizing the MSE over p. To do so, one can 
differentiate Eq. (23) with respect to p, for k > p, 
and set the result to zero, having other parameters 
fixed. However, Eq. (23) is a complicated function 
which involves the computation of eigenvalues, 
eigenvectors, matrix inversion and matrix multipli- 
cation. Thus, an explicit solution is not easy to 
obtain. An alternative way using the numerical 
approach may be chosen to determine the switch- 
ing point. That is, for different cases, with different 
values of p, we can figure out the minimum value of 
switching point from the individual learning curves, 
in terms of transient MSE. These results are shown 
in Figs. 3-7. We found that these graphs exhibit 
some interesting characteristics which are de- 
scribed as follows: 
1. A common feature observed from Figs. 3 to 7 is 

that the larger is the tap-weight length, N, the 

zl Y; 4.00 16.00 26.00 34.00 42.00 S0.S 
I I I 1 I I I I I v; 

7 7 

;I , ( , ( , , , , , E 
10.00 18.00 26.00 34.00 42.00 so.06 

SWlTCHlNG POINT P 

Fig. 3. The MSE versus switching point for varied weight length 
with SNR = 40dB, SSR = 20dB, p, = 0.005, p(2 = 0.005. 

2. 

3. 

smaller is the optimum value of switching point. 
This is because for larger value N, as can be seen 
in Fig. 8, the ALE has a faster convergence rate 
in the initial adaptation process, yielding the 
result described above. 
As shown in Figs. 3 and 4, for different values of 
SNR, with other parameters fixed, the optimum 
value of p will be approximately the same. 
Let us see the effect of p due to the change of 
step-sizes, pL1 and p2. From Figs. 4-6, it can be 
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Fig. 4. The MSE versus switching point for varied weight length 

with SNR = 60dB, SSR = 20dB, pI = 0.005, pLz = 0.005. 

4. 

seen that the value of optimum p increases as the 
step-sizes, p1 and /Lo, decrease. 
Comparing Fig. 7 with Fig. 4, we can see that the 
value of optimum p with lower SSR is much 
larger than that with relatively higher SSR. The 
reason of this is due to the fact that in the LMS 
algorithm mode with SSR = OdB (equal power 
of sinusoidal signals), a fast convergence rate can 
be achieved, as shown in Fig. 8 [l]. 

26.00 34.00 42.00 50.0~ 
, , , I L I I b 1 _& 

7 

0 N =12 

A N =I6 =: 

+ N-20 7 

X N =24 

0 A’=28 :: 
9 N=32 -r; 

SWITCHING POINT P 

Fig. 5. The MSE versus switching point for varied weight length 

with SNR = 60dB. SSR = 20dB, p, = 0.0025, p2 = 0.005. 

4.2. Convergence property of the HLMS ALE 

In this section, the convergence property 
the HLMS algorithm for both theoretical 

of 
re- 

sults and simulation data is examined. To illus- 
trate the convergence property, again, ALE is 
considered. Also, to verify the accuracy of the 
theoretical results, the received signal described 
in Eq. (24) is used to perform the computer 
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Fig. 6. The MSE versus switching point for varied weight length Fig. 7. The MSE versus switching point for varied weight length 
with SNR = 60dB, SSR = 20dB, pI = 0.0025, fiz = 0.01. with SNR = 60dB, SSR = OdB, p, = 0.005, pcz = 0.005. 

simulation: A is chosen to be 

d(k) = Al exp(j2rrfIk) + A2exp(j2~fik) + n(k) 

(24) 

and for simplicity T, is set to unity. Moreover, in 
the simulation data results, the two frequencies 
fi and fi are chosen to be 0.2 and 0.25 (normalized 
frequency), respectively. Thus from [21], the delay 

0 
so.00 18.00 26.00 34.00 

t k I 1 1 ’ ’ 
42.00 ’ 50 ’ 

-0 

0 N =I2 

A N=16 

1 

A=21fi-~~1 

N-l -- 
2 kZ2 

for N = 16. The theoretical and simulation results 
with parameters, N = 16, L = 2, p1 = 0.005, p = 30 
and SSR = 20dB are shown in Figs. 9 and 10, for 
SNR = 20 and 40 dB, respectively. As can be seen 
in Figs. 9 and 10, the theoretical results agree quite 



0 N =16 
A ~=32 

8 =: 

ii? 
m 

'0.00 I 
I I 

320.00 1 1 480.00 1 1 
I I I 1 I , I I 1 , I I In 

160.00 640.00 800.00 960.00 1120.00 1280.00 1440.00 1600100 

NUMBER OF ITERATION 

Fig. 8. The convergence rate of the conventional LMS algorithm for tap-weight length being 16 and 32 with SNR = 60dB, 

SSR = 20 dB, fiL1 = 0.005. 

well with the simulation results. It is noted that in 
implementing the inverse of R, in the HLMS algo- 
rithm for the simulation data, a recursive formula- 
tion shown in [lo] is employed. The learning curve 
is the average of 100 runs for the simulation results. 

To see the advantage of the HLMS algorithm, 
the comparison with the LMS algorithm and the 
NLMS algorithm are made. These are shown in 
Figs. 11-13, for varied SSR being 0,lO and 20dB, 
and with parameters N = 16, SNR = 40, p = 30 
and step-size p2 = 0.01 in the NLMS algorithm 
and ,u~ = 0.005, p2 = 0.01 in HLMS algorithm. In 
all of the cases shown in Figs. 11-13, we see that the 
HLMS algorithm converges to the same steady 
state MSE as the NLMS algorithm, but has much 
faster convergence rate in the transient state. The 
reason of considering relatively large SNR in our 

discussion is because in such cases the disparity of 
eigenvalues of R will be relatively large and under 
this circumstance the conventional LMS adaptive 
algorithm may not perform well. Indeed, this situ- 
ation is often encountered in the adaptive array 
beamforming system for jammer suppression, in 
which we have a broad-band signal buried in 
broad-band noise with multiple jammers in the 
underwater environment. 

Similar results are observed from the same plots 
for the HLMS algorithm compared to the LMS 
algorithm. Since as shown in [l], in the case that 
SSR is OdB (sinusoids with equal power), the LMS 
algorithm can converge much faster. However, 
even in this case, the performance of the HLMS 
algorithm is still compatible with the LMS algo- 
rithm. Therefore, we can conclude that the HLMS 
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Fig. 9. The comparison of the theoretical and simulation results of the HLMS algorithm with SNR = 4OdB, SSR = 20dB, pI = 0.005, 
pz = 0.01 and switching point being 30. 

algorithm has better performance and is more ro- 
bust than the conventional LMS algorithm as well 
as the NLMS algorithm. 

Next, let us discuss the effect when the optimum 
switching point is not adopted. As shown in Fig. 3, 
the optimum value of p is 24. Now, if all other 
parameters are kept the same as those in Fig. 3, but 
the values of p are chosen to be 14,24 and 40, the 
results of the ALE are shown in Fig. 14. From Fig. 
14, we observed that the value of the switching 
point does not affect the convergence property sig- 
nificantly. Therefore, based on this observation, we 
suggest that the value of p can be chosen propor- 
tional to the value of N, filter length. Based on the 
theoretical and simulation results, we will suggest 
that the value of switching point in the range of 

N to 1.5N will have a better performance. This is 
reasonable, because with the data number equal to 
the tap-weight length or slightly greater than it, the 
input data will be sufficient to estimate the power 
or matrix R. 

5. Conclusion 

In this paper, the performance of the HLMS 
algorithm has been investigated. For evaluating the 
performance of the HLMS algorithm, an analytical 
expression, in terms of transient MSE, with ap- 
plication to ALE, was derived. Moreover, the re- 
sults of simulation data verified the accuracy of 
the theoretical analysis. In general, the HLMS 
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Fig. 10. The comparison of the theoretical and simulation results of the HLMS algorithm with SNR = ZOdB, SSR = 20dB, pj = 0.005, 
pz = 0.01 and switching point being 30. 

algorithm can yield more robust performance than 
the conventional LMS algorithm and the NLMS 
algorithm. 

The selection of switching point is also addressed 
using the numerical approach. Many interesting 
characteristics were observed, which showed the 
relationship to the relevant parameters of the ALE. 
However, an explicit expression of the optimum 
switching point is still a challenge in our future 
study. Fortunately, the value of the switching point 
is not vital as to affect the convergence property 
significantly in our study. 

Appendix A 

By proceeding in a similar manner as in 173, Eq. 
(11 b) can also be derived. Since the input autocor- 

relation matrix R can be represented by 

R = QAQH = : liqiq”, 
i=l 

64.1) 

where pi are the eigenvalues of R and qi are the 
corresponding eigenvectors defined in Eqs. (6). 
Thus, the matrix (I - ~P~R)~ can be expressed as 

(i - ZL~.~R)~ = i: ~1 - 2~*l~i)kqiq”. (A.2) 
i=o 

For consistency, we let M,(O) be a null vector which 
we used to derive Eq. (1 la). Using this fact, Eq. (9b) 
can be simplified as 

p-1 

M,,,(k) = (1 - 2/~~)~-~2/4 c (I - 2p1R)‘p 
i=O 

k-l 

+  2pzR-’ c (1 - 2/~~)~-.~-lp. 
i=p 

(A.31 
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Fig. 11. The performance of the HLMS, conventional LMS and NLMS algorithms with SNR = 40dB, SSR = OdB, p, = 0.005, 
p2 = 0.005, N = 16 and switching point = 30. 

where the cross-correlation vector p was defined in 
Eq. (7). Applying Eq. (A.2) and Eq. (7) to Eq. (A.3), 
we have 

K(k) 

= C1 - 2P2)k-pfii~l Pi 2 {l - C1 - 2PlAi)‘)qi 
I 

=i$l fii${I -(l - 2/JIAi)‘(l -2/J2)k-P}Vi. 
I 

(A.4) 

Hence, the proof of Eq. (11 b) is also completed. 

Appendix B 

The derivation of the weight covariance matrix 
recursive equation of the equivalent time-domain 
expression of the complex NLMS algorithm can be 
obtained using the Gaussian Moment Factoring 
Theorem. This theorem states [16] that for given 
complex Gaussian random variables, x1, x2, x3 and 
x4, the following relationship holds: 

E[xrx:x,x:] = E[xlx;]E[x3x:] 

+ E[x~x~]E[x:xJ. (B.1) 

Now, we consider the weight covariance matrix, 

CovCw(k + I)] = E{ Cw(k + 1) - Mw(k+l)] 
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Fig. 12. The performance comparison of the HLMS, conventional LMS and NLMS algorithms with SNR = 40dB, SSR = IOdB, 

p1 = 0.005, pLz = 0.01, N =: 16 and switching point = 30. 

x [:w(k + 1) - Mw(,c+ lJH}. (B.2) 

Assuming that w(k) depends only on {d(n),x(n); 
n = O,l, . . . , k - l}. Moreover, the different index 
elements of the sequence of data vectors and also 
desired signal samples are assumed to be statis- 
tically independent. Thus, from Eq. (2b), the mean 
weight vector recursive equation can be written as 

M w(k+l) = {I- 2~C12R-lECX*(k)XT(k)l)E[W(k)1 

+ 2p2R- ‘p 

= (1 - 2~z)A4i,~k, + 2pzR-‘p. (B.3) 

Substituting Eqs. (2b) and (B.3) into Eq. (B.2) and 

after some manipulation, we obtain 

Cov[w(k + l)] 

= Cov [w(k)] - 4p2Cov [w(k)] 

+ 4~LtR-1E{x*(k)xT(k)E[w(k)~H(k)] 

xx*(k)xT(k)}R-’ 

- 4,&R-‘E{x*(k)xT(k)M,,,,d*(k)xT(k)}R-’ 

+ 4~: MwwpHR - ’ - ‘b&C,,, M,H,,, 

- 4,u:R-‘E{d(k)x*(k)M;ck,x*(k)xT(k))R-l 

+ 4&R- l~hMww 

+ 4$R-‘E{d(k)x*(k)d*(k)xT(k)}RP’ 

- 4&R- ‘pp”R-‘. (B.4) 
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Fig. 13. The performance comparison of the HLMS, conventional LMS and NLMS algorithms with SNR = 4OdB, SSR = 20dB, 
pt = 0.005, pz = 0.01, N = 16 and switching point = 30. 

Further evaluation of the third, fourth, seventh and 
ninth terms on the right-hand side of Eq. (B.4) 
require the moment theorem which was described 
in Eq. (B.l). 

Now, applying Eq. (B.l) to the third term on the 
right-hand side of Eq. (B.4) we have the similar 
results as in [7]: 

E(x*(k)xT(k)E[w(k)wH(k)]x*(k)xT(k)} 

= RE[w(k)wH(k)]R + RTr{RE[w(k)wH(k)]}. 

(B.5) 

Similarly, applying Eq. (B.1) to the fourth term on 
the right-hand side of Eq. (B.4), we have 

= RM!&,P + P~M,wR. (B.6) 
Again, since the seventh term of right-hand side of 
(B.4) is the transpose matrix of the fourth term, 
thus, 

= P M:,,,R + R M:(~,P. (B-7) 

Finally, from (B.4), the ninth term on the right- 
hand side of (B.4) will be 

E{d(k)x*(k)xT(k)d*(k)) =ppH + c:R. VW 

Now, applying the results from Eqs. (B.5)-(B.8) 
to Eq. (B.4) yields the weight covariance matrix 
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recursive equation, i.e., 

Cov{w(k + 1)) 

= (1 - 4/l* + 4p:)Covjw(k)3 

+ 4~5 Tr{RE[w(k)w”(k)]}R-’ 

+ 4&R-’ {d -- Mf;l,,,p -pHMwo,}. (B.9) 

Eq. (B.9) can be rewritten as 

Cov{w(k + 1)) = (1 - 2~*)2COVjW(k)} 

+ 4&Tr{R Cov{w(k)j}Rml 

+ 4~fR~‘(o; - k&p 

-phMe, + M,H,,,RMd. 

(B.ll) 

Using the following relationship: 

TrCR~C~VG~“(~)l> 

= TrjRCCov(W)) + ~wd$&.J ).. (B.lO) 

Appendix C 

In this appendix, the values Of yi(p), in terms of its 
initial value, derived in [l] is summarized in what 
follows. For convenience, we rewrite Eq. (19a) (for 



86 S.-J. Chern et al. 1 Signal Processing 44 (1995) 67-88 

L = 2) in a matrix form (with reduced rank), i.e. 

Y(P) = [h(P) Y2(P) YdP)l’Y 

= [I - Hly(JJ - 1) + 4/&%(P - l)J, (Cl) 

where 

4P”1&(1 - 2PLl&) - 4PLtMZ - 4&v - 2)Ar 13 

H= -4&W* 4PL1&(1 - %1~2) - 4/.&N - W,& I 9 (C.2) - 4&i & - 4/G 13 12 4P1&Cl - PLIW - 1)&l 

1 = [A_, A2 AsIT and Q&J - 1) was defined in Eq. (21a) with k = p - 1. Note that H is not a symmetric 
matrix; however, we can find a similarity transformation for H: 

ll = diag(1 1 Jn), (C.3) 

such that H can be transformed to be as 

Furthermore, for convenience, let us define a new vector, c(p), 

C(P) = MY = (Z - A)c(P - 1) + 4dvlo(~ - l)b, 

where 

b = ll3w = [/I, i12 JN-2&]=. 

Now, since A is symmetric, it can be factorized as 

A = S.TS=, 

where S is a unitary matrix and I; is a diagonal matrix which can be defined as 

S= (s1 s2 Q) 

and 

(C.5) 

(C.6) 

(C.7) 

respectively, with (QT~; i = 1,2,3) being the eigenvalues of A and si is the associated eigenvector of ai. Now, 
starting with c(O), the initial vector of c(p) and iteratively substituting in Eq. (C.5), we have 

p-1 p-l N(a2)2 
C(p) = (Z - A)P~(0) + 4~: <min 1 (Z - A)‘b + 4~: 1 a(Z- A)P-‘-‘(1 - 2pIIZJ2’b 

i=O i=O 

1 
1 

+4L(: 1 ‘-’ !!!!$$I _ A)P-i- I(1 _ ‘&12)2ibe 

i=O 2 
(C.9) 

It is noted that in obtaining Eq. (C.9), Eqs. (20a) and (21a) have been used. Now, since S is a unitary 
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matrix, we have 

(1 - c(# 0 0 
(I-A)P=S 0 1 (1 - GY ST. 

0 0 (1 -!I@ I 

Apply Eq. (C.10) to Eq. (C.9), we have 

(1 - cLr)P 0 0 
c(p)=S 1 0 (l-c@ 0 I STC(0) 

0 0 (1 - a3)p 

1 - (1 - LXr)P 
-- 0 0 

at 

4P? I 1 - 
+ SmiJ 0 

(1 - cI*)P 
0 STb 

a2 

1 0 0 -(l -a3)P 

513 

! 

+ 4P:.q 
*1 

1 (1 - 2/&)2P - (1 - a# 

(1 - 2P1U2 - (1 - @I) 

s 0 

0 
L 

0 

(1 -- 2&)2P - (1 - cQ)P 

(1 - 2P1U2 - (1 - u2) 

0 

0 

0 

(1 - 2/&)2P - (1 - r3)P 

(1 - 2/LrQ - (1 - 23) 

87 

(C. 10) 

S=b 

: 

(1 ‘- 2#u1/12)2P - (1 - Xl)” 

(1 - 2Pl~2)2 - (1 - 4) 

0 0 

0 
(1 - 2,U1A2)2P - (1 - c@ 

(1 - 2Lh~2)2 - (1 - a2) 

0 

0 0 
(1 - 2&,)2P - (1 - ct3)P 

(1 - 2PlA2)2 - (1 - r3) I 

S’b. 

(C.11) 

Finally, the elements of y(p) can be obtained from Eq. (C.12): 

Y(P) = n- ‘C(P). (C.12) 
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